点击右上角微信好友

朋友圈

请使用浏览器分享功能进行分享

正在阅读:至尊彩票注册网_至尊彩票走势图
首页>文化频道>要闻>正文

至尊彩票注册网_至尊彩票走势图

来源:至尊彩票攻略2024-03-28 17:48

  

至尊彩票注册网

A股30年再出发 我们需要一个怎样的资本市场?******

  期待中国资本市场“从新出发、从严治理”,在新的征途呈现出更理性、更健康、更成熟的风貌。

  1990年12月19日,上海证券交易所鸣锣开业,首批“老八股”上市,也标志着中国资本市场的诞生。如今,A股市场已风雨兼程走过整整30年的历程。

  相对于境外成熟市场数百年的历史,刚满30周岁的A股市场还很年轻。但所取得的成绩有目共睹。比如多层次资本市场架构已趋成型。从此前只有沪深主板,到现在的中小板、创业板、科创板、新三板,以及目前已颇具规模的区域性股权交易市场等,层次分明,也为不同行业、不同规模、不同类型、不同需求的企业提供差异化的服务奠定了基础。科创板的设立,启动注册制试点等,则在资本市场发展中具有“里程碑”式的意义。

  市场规模的不断扩张,让A股市场在全球的影响力日益提升。算上深交所开业后的五只股票,A股市场最初挂牌的上市公司只有13家。数量虽少,但意义非凡。没有这13家上市公司打头阵,沪深股市就不可能有目前超过4100家的规模,以及近80万亿的总市值。随着A股市场规模的不断扩张,其在全球市场的影响力才不断提升。

  从支持实体经济发展角度看,A股也功不可没。根据Wind资讯数据,截至12月18日,30年来,A股IPO首发融资规模达3.65万亿元,再融资规模达11.97万亿元,合计15.62万亿元。相对于发行债券、银行借贷融资,直接融资对于实体经济的发展更加高效。

  不仅如此,30年来,资本市场也成就了一大批明星上市公司。像万科、格力、茅台等企业不断发展壮大,离不开资本市场的支持;众多民营企业、惠及国计民生的企业做大做优做强,资本市场在其中发挥了巨大的作用。而且,由于拥有资本市场这一退出通道,高科技企业、创新创业型企业等也能获得风投、私募股权基金的支持,反过来又能促进这类企业的发展。

  然而,而立之年再出发,我们需要一个怎样的资本市场?站在历史的新起点,我们需要认真审视当下的不足,通过不断改革与完善,将资本市场推上更高的台阶。

  首先,我们要认识到当前沪深两市的上市公司质量整体上不高的问题。虽然沪深股市挂牌公司已超过4100家,但上市公司质量却不尽如人意。某些上市公司长期不分红、不回报股东,没有任何的投资价值,也与监管部门倡导的积极分红政策相悖。

  其次,公司治理水平普遍不高也是一大硬伤。上市公司实控人、大股东、董监高等职责界限与法律责任不明确,董事会、监事会、股东大会“三会”运作不规范,独董不独,内控机制形同虚设,信息披露存在短板等,都是上市公司治理结构不完善与紊乱的具体表现,更是其治理水平不高的表现。

  此外,投资者保护不到位同样不可被忽视。投资者保护是一个老生常谈的话题,也是资本市场一“老大难”问题。其集中表现为违规成本低,以及维权难。新证券法虽然大幅提高了违规成本,且推出中国版的证券集体诉讼制度,但投资者利益保护工作仍然存在漏洞。比如刑法、公司法还没有同步修订到位。缺乏刑法的联动修法,对于违规行为的打击,将呈现出跛脚的一面。

  期待中国资本市场“从新出发、从严治理”,在新的征途呈现出更理性、更健康、更成熟的风貌。

  □曹中铭(财经评论人)

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?******

  相比起今年诺贝尔生理学或医学奖、物理学奖的高冷,今年诺贝尔化学奖其实是相当接地气了。

  你或身边人正在用的某些药物,很有可能就来自他们的贡献。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  2022 年诺贝尔化学奖因「点击化学和生物正交化学」而共同授予美国化学家卡罗琳·贝尔托西、丹麦化学家莫滕·梅尔达、美国化学家巴里·夏普莱斯(第5位两次获得诺贝尔奖的科学家)。

  一、夏普莱斯:两次获得诺贝尔化学奖

  2001年,巴里·夏普莱斯因为「手性催化氧化反应[1] [2] [3]」获得诺贝尔化学奖,对药物合成(以及香料等领域)做出了巨大贡献。

  今年,他第二次获奖的「点击化学」,同样与药物合成有关。

  1998年,已经是手性催化领军人物的夏普莱斯,发现了传统生物药物合成的一个弊端。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  过去200年,人们主要在自然界植物、动物,以及微生物中能寻找能发挥药物作用的成分,然后尽可能地人工构建相同分子,以用作药物。

  虽然相关药物的工业化,让现代医学取得了巨大的成功。然而随着所需分子越来越复杂,人工构建的难度也在指数级地上升。

  虽然有的化学家,的确能够在实验室构造出令人惊叹的分子,但要实现工业化几乎不可能。

  有机催化是一个复杂的过程,涉及到诸多的步骤。

  任何一个步骤都可能产生或多或少的副产品。在实验过程中,必须不断耗费成本去去除这些副产品。

  不仅成本高,这还是一个极其费时的过程,甚至最后可能还得不到理想的产物。

  为了解决这些问题,夏普莱斯凭借过人智慧,提出了「点击化学(Click chemistry)」的概念[4]。

  点击化学的确定也并非一蹴而就的,经过三年的沉淀,到了2001年,获得诺奖的这一年,夏普莱斯团队才完善了「点击化学」。

  点击化学又被称为“链接化学”,实质上是通过链接各种小分子,来合成复杂的大分子。

  夏普莱斯之所以有这样的构想,其实也是来自大自然的启发。

  大自然就像一个有着神奇能力的化学家,它通过少数的单体小构件,合成丰富多样的复杂化合物。

  大自然创造分子的多样性是远远超过人类的,她总是会用一些精巧的催化剂,利用复杂的反应完成合成过程,人类的技术比起来,实在是太粗糙简单了。

  大自然的一些催化过程,人类几乎是不可能完成的。

  一些药物研发,到了最后却破产了,恰恰是卡在了大自然设下的巨大陷阱中。

   夏普莱斯不禁在想,既然大自然创造的难度,人类无法逾越,为什么不还给大自然,我们跳过这个步骤呢?

  大自然有的是不需要从头构建C-C键,以及不需要重组起始材料和中间体。

  在对大型化合物做加法时,这些C-C键的构建可能十分困难。但直接用大自然现有的,找到一个办法把它们拼接起来,同样可以构建复杂的化合物。

  其实这种方法,就像搭积木或搭乐高一样,先组装好固定的模块(甚至点击化学可能不需要自己组装模块,直接用大自然现成的),然后再想一个方法把模块拼接起来。

  诺贝尔平台给三位化学家的配图,可谓是形象生动[5] [6]:

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  夏普莱斯从碳-杂原子键上获得启发,构想出了碳-杂原子键(C-X-C)为基础的合成方法。

  他的最终目标,是开发一套能不断扩展的模块,这些模块具有高选择性,在小型和大型应用中都能稳定可靠地工作。

  「点击化学」的工作,建立在严格的实验标准上:

  反应必须是模块化,应用范围广泛

  具有非常高的产量

  仅生成无害的副产品

  反应有很强的立体选择性

  反应条件简单(理想情况下,应该对氧气和水不敏感)

  原料和试剂易于获得

  不使用溶剂或在良性溶剂中进行(最好是水),且容易移除

  可简单分离,或者使用结晶或蒸馏等非色谱方法,且产物在生理条件下稳定

  反应需高热力学驱动力(>84kJ/mol)

  符合原子经济

  夏尔普莱斯总结归纳了大量碳-杂原子,并在2002年的一篇论文[7]中指出,叠氮化物和炔烃之间的铜催化反应是能在水中进行的可靠反应,化学家可以利用这个反应,轻松地连接不同的分子。

  他认为这个反应的潜力是巨大的,可在医药领域发挥巨大作用。

  二、梅尔达尔:筛选可用药物

  夏尔普莱斯的直觉是多么地敏锐,在他发表这篇论文的这一年,另外一位化学家在这方面有了关键性的发现。

  他就是莫滕·梅尔达尔。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  梅尔达尔在叠氮化物和炔烃反应的研究发现之前,其实与“点击化学”并没有直接的联系。他反而是一个在“传统”药物研发上,走得很深的一位科学家。

  为了寻找潜在药物及相关方法,他构建了巨大的分子库,囊括了数十万种不同的化合物。

  他日积月累地不断筛选,意图筛选出可用的药物。

  在一次利用铜离子催化炔与酰基卤化物反应时,发生了意外,炔与酰基卤化物分子的错误端(叠氮)发生了反应,成了一个环状结构——三唑。

  三唑是各类药品、染料,以及农业化学品关键成分的化学构件。过去的研发,生产三唑的过程中,总是会产生大量的副产品。而这个意外过程,在铜离子的控制下,竟然没有副产品产生。

  2002年,梅尔达尔发表了相关论文。

  夏尔普莱斯和梅尔达尔也正式在“点击化学”领域交汇,并促使铜催化的叠氮-炔基Husigen环加成反应(Copper-Catalyzed Azide–Alkyne Cycloaddition),成为了医药生物领域应用最为广泛的点击化学反应。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  三、贝尔托齐西:把点击化学运用在人体内

  不过,把点击化学进一步升华的却是美国科学家——卡罗琳·贝尔托西。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  虽然诺奖三人平分,但不难发现,卡罗琳·贝尔托西排在首位,在“点击化学”构图中,她也在C位。

  诺贝尔化学奖颁奖时,也提到,她把点击化学带到了一个新的维度。

  她解决了一个十分关键的问题,把“点击化学”运用到人体之内,这个运用也完全超出创始人夏尔普莱斯意料之外的。

  这便是所谓的生物正交反应,即活细胞化学修饰,在生物体内不干扰自身生化反应而进行的化学反应。

  卡罗琳·贝尔托西打开生物正交反应这扇大门,其实最开始也和“点击化学”无关。

  20世纪90年代,随着分子生物学的爆发式发展,基因和蛋白质地图的绘制正在全球范围内如火如荼地进行。

  然而位于蛋白质和细胞表面,发挥着重要作用的聚糖,在当时却没有工具用来分析。

  当时,卡罗琳·贝尔托西意图绘制一种能将免疫细胞吸引到淋巴结的聚糖图谱,但仅仅为了掌握多聚糖的功能就用了整整四年的时间。

  后来,受到一位德国科学家的启发,她打算在聚糖上面添加可识别的化学手柄来识别它们的结构。

  由于要在人体中反应且不影响人体,所以这种手柄必须对所有的东西都不敏感,不与细胞内的任何其他物质发生反应。

  经过翻阅大量文献,卡罗琳·贝尔托西最终找到了最佳的化学手柄。

  巧合是,这个最佳化学手柄,正是一种叠氮化物,点击化学的灵魂。通过叠氮化物把荧光物质与细胞聚糖结合起来,便可以很好地分析聚糖的结构。

  虽然贝尔托西的研究成果已经是划时代的,但她依旧不满意,因为叠氮化物的反应速度很不够理想。

  就在这时,她注意到了巴里·夏普莱斯和莫滕·梅尔达尔的点击化学反应。

  她发现铜离子可以加快荧光物质的结合速度,但铜离子对生物体却有很大毒性,她必须想到一个没有铜离子参与,还能加快反应速度的方式。

  大量翻阅文献后,贝尔托西惊讶地发现,早在1961年,就有研究发现当炔被强迫形成一个环状化学结构后,与叠氮化物便会以爆炸式地进行反应。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  2004年,她正式确立无铜点击化学反应(又被称为应变促进叠氮-炔化物环加成),由此成为点击化学的重大里程碑事件。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  贝尔托西不仅绘制了相应的细胞聚糖图谱,更是运用到了肿瘤领域。

  在肿瘤的表面会形成聚糖,从而可以保护肿瘤不受免疫系统的伤害。贝尔托西团队利用生物正交反应,发明了一种专门针对肿瘤聚糖的药物。这种药物进入人体后,会靶向破坏肿瘤聚糖,从而激活人体免疫保护。

  目前该药物正在晚期癌症病人身上进行临床试验。

  不难发现,虽然「点击化学」和「生物正交化学」的翻译,看起来很晦涩难懂,但其实背后是很朴素的原理。一个是如同卡扣般的拼接,一个是可以直接在人体内的运用。

「  点击化学」和「生物正交化学」都还是一个很年轻的领域,或许对人类未来还有更加深远的影响。(宋云江)

  参考

  https://www.nobelprize.org/prizes/chemistry/2001/press-release/

  Pfenninger, A. Asymmetric Epoxidation of Allylic Alcohols: The Sharpless Epoxidation[J]. Synthesis, 1986, 1986(02):89-116.

  Rao A S . Addition Reactions with Formation of Carbon–Oxygen Bonds: (i) General Methods of Epoxidation - ScienceDirect[J]. Comprehensive Organic Synthesis, 1991, 7:357-387.

  Kolb HC, Finn MG, Sharpless KB. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew Chem Int Ed Engl. 2001 Jun 1;40(11):2004-2021.

  https://www.nobelprize.org/uploads/2022/10/popular-chemistryprize2022.pdf

  https://www.nobelprize.org/uploads/2022/10/advanced-chemistryprize2022.pdf

  Demko ZP, Sharpless KB. A click chemistry approach to tetrazoles by Huisgen 1,3-dipolar cycloaddition: synthesis of 5-acyltetrazoles from azides and acyl cyanides. Angew Chem Int Ed Engl. 2002 Jun 17;41(12):2113-6. PMID: 19746613.

  (文图:赵筱尘 巫邓炎)

[责编:天天中]
阅读剩余全文(

相关阅读

视觉焦点

  • 31岁男子用假驾照被罚 父母质问交警:他还是个孩子啊

  • 亚马逊AI可自动解雇工人

独家策划

推荐阅读
至尊彩票玩法你好世界:寻找心中的风景
2024-09-03
至尊彩票娱乐谁建群谁负责多名群主已被拘留 有微信群的都看看
2024-03-11
至尊彩票登录航拍热带气旋肆虐莫桑比克 房屋被毁
2024-10-31
至尊彩票登录 【17:30直播】KPL春季赛:GK VS WE
2024-05-23
至尊彩票骗局【浙江】RCEP实施满一年 为浙江带来哪些机遇与挑战
2024-06-03
至尊彩票开户PPP到底是什么?浅谈PPP与其神奇的“祖师爷”
2024-05-20
至尊彩票赔率“一个中国”原则上建交的萨尔瓦多 驻华使馆开馆
2024-11-04
至尊彩票充值 郭晶晶霍启刚带儿子插秧:这才是真正的豪门!
2024-12-26
至尊彩票下载app把党的伟大自我革命进行到底
2024-09-24
至尊彩票技巧《流浪地球2》里行星发动机造得了吗?专家解答
2024-03-09
至尊彩票app下载了不起的“中国造”,比Q7还霸气,续航1000KM,或40万
2024-08-30
至尊彩票手机版APP为社会主义现代化强国建设贡献退役军人工作力量
2024-08-05
至尊彩票投注宫廷瑞兽登上3X3黄金联赛 幽默化解无球尴尬
2024-04-03
至尊彩票官网[访谈]慕容拖鞋:拒绝无目的
2025-01-03
至尊彩票官网网址俄乌领导人针锋相对隔空喊话 各自为对话开条件
2024-03-21
至尊彩票交流群 西甲-西班牙人前瞻:武磊盼延续进球势头 定欧战命运
2024-10-02
至尊彩票注册欧尚科赛GT将三季度上市 搭载2.0T动机
2024-06-06
至尊彩票网址家长福利:公办校or国际校
2024-07-22
至尊彩票开奖结果中国大学综合实力100强
2024-04-27
至尊彩票客户端叙利亚哈马省IS武装清除完毕 军方:重要进展
2024-03-28
至尊彩票手机版8种情况须尽早进行肺移植
2024-12-08
至尊彩票官方网站印度唯一航母出事故起火 局座又预言对了
2024-10-28
至尊彩票返点《周恩来回延安》曝首款预告 戏骨连抛催泪弹
2024-10-10
至尊彩票计划今夜美国PCE指数点燃金市 还会影响美联储议息
2024-11-17
加载更多
至尊彩票地图